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Martine GANET-SCHOELLER
EADS ASTRIUM Space Transportation

Samir BENNANI
ESTEC European Space Agency

Spring 2012

1



Outline

1. Occupation measures for validation

2. Generalized moment problem and LMI relaxations

3. Application on ACS1 benchmark

4. Discussion

2



From Cauchy to Liouville

Dynamical system described by nonlinear ODE

ẋ = f(x)

with Lipschitz vector field f has a unique solution (trajectory) xt
starting from a given initial condition x0 ∈ Rn

Suppose x0 is not known exactly: think of it as a random variable
modeled by a probability measure µ0

At time t, state xt is also modeled by a probability measure µt
whose time evolution is captured by a linear PDE

∂µt

∂t
+

n∑
i=1

∂(fµt)i
∂xi

= 0

called Liouville’s transport or advection equation
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Occupation measure

Given a compact set X ⊂ Rn, define the occupation measure

µ(X) =
∫ T

0
µt(X)dt

which measures the time spent by the trajectory in X

Measure µ encodes the whole trajectory and

satisfies the integral Liouville PDE

div (fµ) = µ0 − µT
and its variational formulation∫

X
Dv · fdµ =

∫
X
vdµT −

∫
X
vdµ0

for all smooth test functions v supported on X

4



Dynamic optimization

We consider that our validation problem can be formulated as a
polynomial dynamic optimization problem over trajectories

J = infx(t) hT (x(T )) +
∫ T

0
h(x(t))dt

s.t. ẋ(t) = fk(x(t)), x(t) ∈ Xk, k = 1,2, . . . , N
x(0) ∈ X0, x(T ) ∈ XT , t ∈ [0, T ]

with given polynomial dynamics fk ∈ R[x] and costs h, hT ∈ R[x]
defined on basic semialgebraic sets

Xk = {x ∈ Rn : gkj(x) ≥ 0, j = 1,2, . . . , Nk}

for given polynomials gkj ∈ R[x]

The infimum is sought over absolutely continuous trajectories
x(t): this problem is infinite-dimensional, nonlinear, nonconvex !
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Linear program on measures

..but it can be reformulated as a linear hence convex problem

J∞ = infµ

∫
hT dµT +

∑
k

∫
h dµk

s.t.
∑
k

∫
Dv · fkdµk =

∫
v dµT −

∫
v dµ0, ∀v ∈ C1(X)

where the unknowns are local occupation measures µk and
the global occupation measure is given by

µ =
∑
k

µk, µ(X) = T

Final time T , initial measure µ0 and terminal measure µT
may be given, or unknown (depending on the problem)

The problem is linear but still infinite-dimensional..
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Measures and their moments

So far we have formulated our validation problem as a dynamic

polynomial optimization problem, and then we have linearized

this problem to obtain an LP measure problem:

J∞ = infµ
∑
k

∫
ckdµk

s.t.
∑
k

∫
akidµk = bi, ∀i

where our unknowns are a finite set of measures µk

The next step consists of manipulating each measure µk
via its moments

ykα =
∫
xαdµk, ∀α ∈ Nn
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Moments and LMI relaxations

Our LP measure problem becomes an LP moment problem:

J∞ = infy
∑
k

∑
α ckαykα

s.t.
∑
k

∑
α akiαykα = bi, ∀i

where our unknowns are a finite set of infinite-dimensional
sequences yk representing our measures

The constraint that yk contains the moments of measure µk
can be formulated as an infinite-dimensional LMI problem, and
we can build a hierarchy of finite-dimensional LMI relaxations:

Jd = infy cTy
s.t. Ay = b

F (y) =
∑
k

∑
α Fkαykα � 0

such that Jd ≤ Jd+1 and limd→∞ Jd = J∞ = J
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Attitude Control System (ACS)

Orbital phase: after main propulsion of upper stage

Composed of manoeuvres performed by ACS for e.g. payload
separation, distancing, non-pollution, passivation, de-orbiting,
stage re-ignition

SAFE-V ACS benchmark studies effects of longitudinal spin
and axis coupling
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ACS1 1DOF simplified model

No time-delay, no pulsation width modulator

Double integrator [
ẋ1
Iẋ2

]
=

[
x2
u

]
with torque control

u(x(t)) = sat(KTdz(xr(t)− x(t)))

with state-feedback K, saturation (sat) and deadzone (dz)
designed to follow reference signal xr(t)

Verification problem: after a fixed time T , does the system state
x(T ) reach a given subset XT of the deadzone region, for all
possible initial conditions x(0) chosen in a given subset X0, for
reference signal xr(t) = 0 ?
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Piecewise affine model

Three cells with affine dynamics: linear regime

X1 = {x : |KTx| ≤ L}, f1(x) =

[
x1
−KTx

]
upper saturation regime

X2 = {x : KTx ≥ L}, f2(x) =

[
x1
−L

]
lower saturation regime

X3 = {x : KTx ≤ −L}, f3(x) =

[
x1
L

]
Objective function to be minimized
to find worst-case trajectory

hT (x) = −x(T )Tx(T )
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GloptiPoly code

% measures

mpol(’x1’,2); m1 = meas(x1); % linear regime

mpol(’x2’,2); m2 = meas(x2); % upper saturation

mpol(’x3’,2); m3 = meas(x3); % lower saturation

mpol(’x0’,2); m0 = meas(x0); % initial

mpol(’xT’,2); mT = meas(xT); % terminal

% dynamics on normalized time range [0,1]

% saturation input y normalized in [-1,1]

K = -[kp kd]/L;

y1 = K*x1; f1 = T*[x1(2); L*y1/I]; % linear regime

y2 = K*x2; f2 = T*[x2(2); L/I]; % upper sat

y3 = K*x3; f3 = T*[x3(2); -L/I]; % lower set
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% test functions for each measure = monomials
% with d = given relaxation order
g1 = mmon(x1,d); g2 = mmon(x2,d); g3 = mmon(x3,d);
g0 = mmon(x0,d); gT = mmon(xT,d);

% unknown moments of initial and final measures
y0 = mom(g0); yT = mom(gT);

% input LMI moment problem
cost = mom(xT’*xT);
Ay = mom(diff(g1,x1)*f1)+...

mom(diff(g2,x2)*f2)+...
mom(diff(g3,x3)*f3); % dynamics

% trajectory constraints
X = [y1^2<=1; y2>=1; y3<=-1];
% initial constraints
X0 = [x0(1)^2<=thetamax^2, x0(2)^2<=omegamax^2];
% terminal constraints (in deadzone region)
XT = [xT’*xT<=epsilon^2];
% bounds on trajectory
B = [x1’*x1<=4; x2’*x2<=4; x3’*x3<=4];
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% input LMI moment problem

P = msdp(max(cost), ...

mass(m1)+mass(m2)+mass(m3)==1, ...

mass(m0)==1, ...

Ay==yT-y0, ...

X, X0, XT, B);

% solve LMI moment problem

% using a general-purpose SDP solver (e.g. SeDuMi)

[status,obj] = msol(P)
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Results

relaxation order d 1 2 3 4
upper bound Jd 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5

CPU time (sec.) 0.2 0.5 0.7 0.9
number of moments 30 75 140 225

We see that the bound obtained at the first relaxation (d = 1)

is not modified for higher relaxations

All initial conditions are captured in the deadzone region

so the control law is validated
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Complexity

Computation burden does not depend too much on the number
of cells modelling the nonlinearities (i.e. the number of mea-
sures) but it depends critically on the number of state variables

For a simple LMI

infy cTy
s.t. Md(yk) � 0, k = 1,2, . . . ,K

where Md(yk) is the moment matrix of a measure µk of n variables
at relaxation order d, the (worst-case) complexity for a primal-
dual interior point algorithm grows in O(Kd4n)

Weak (linear) dependence on number of measures K
Strong (exponential) dependence on number of states n
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Complexity

Real uncertain parameters can be handled as additional states

(see technical report for ACS1 1DOF with uncertain inertia)

ACS1 3DOF model (quadratic nonlinearities, 10 states) can also

be handled with these techniques:

relaxation order d 1 2 3 4
CPU time (sec.) 0.2 11.6 24.2 2640

number of moments 110 770 1430 5720

4th LMI relaxation is quite demanding, but in this case

useful bounds for validation were already obtained

at lower LMI relaxation orders
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Extension to time-delay systems

Example of nonlinear ODE with one time-delay τ > 0:

ẋ(t) = f(x(t)) + g(x(t− τ)), ∀t ∈ [0, T ]

with boundary conditions

x(t) = ξ(t), ∀t ∈ [−τ,0]

where ξ(t) is a given function recording the state history

Instead of transporting a probability measure µt(dx) supported

on X ⊂ Rn from initial time t = 0 to terminal time t = T , we must

transport the state history in an occupation measure µt(ds, dx)

supported on [−τ,0]×X for t ∈ [0, T ]
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Extension to discrete-time systems

The probability measure µk(x) transported along nonlinear

discrete-time system dynamics

xk+1 = f(xk)

satisfies the discrete-time linear Liouville equation

µk+1(X) =
∫
f−1(X)

µk(dx) =
∫
IX(f(x))µk(dx)

Moments of measure µk+1 can be expressed linearly as functions

of moments of measure µk as follows∫
v(x)µk+1(dx) =

∫
v(f(x))µk(dx)

for all test functions, e.g. v(x) = xα, α ∈ Nn
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Conclusion

Main features of moment method:

• verification/validation formulated as nonlinear nonconvex

infinite-dimensional functional optimization problem

• problem is linearized in measure space

• measures are handled via moments and hierarchy of LMIs

• SDP solver provides monotonically sequence of bounds

• models are piecewise polynomial, no use of LFT

• software readily available (GloptiPoly, SeDuMi)
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