Estimation, filtering and detection

This course will cover description of the uncertainty of hidden variables (parameters and state of a dynamic system) using the probability language and methods for their estimation. Based on bayesian problem formulation principles of rational behavior under uncertainty will be analyzed and used to develop algorithms for parameter estimations (ARX models, Gaussian process regression), filtering (Kalman filter) and detection (likelihood ratio theory) . We will demonstrate numerically robust implementation of the algorithms applicable in real life problems for the areas of industrial process control, robotics and avionics.

Kód
BE3M35OFD
Semestr
zimní
Rozsah
2p+2c
Kapacita
18
Obsazeno
4
Počet kreditů
6
Zakončení
zápočet a zkouška
Jazyk výuky
angličtina
Přednášející
Poznámka
Rozsah 3+1
Obsah přednášek

1. Review of basic concepts of statistics
2. MS, LMS and ML estimation
3. Bayesian approach to uncertainty description, model of dynamic system
4. Identification of ARX model parameters
5. Tracking of time varying parameters, forgetting, prior information
6. Numerically robust algorithms for parameter estimation
7. Gaussian process regression
8. Stochastic system, probabilistic state definition, Kalman filter
9. Kalman filter for colored noise, extended Kalman filter
10. Stochastic dynamic programming, LQ and LQG controller, certainty equivalence principle
11. Fault detection and isolation methods
12. Likelihood ratio - theory and applications
13. Nonlinear estimation - local vs. global approximation
14. Monte Carlo methods

Náplň cvičení

Individual assigments - implementation of selected algorithms in Matlab, solution of individual technical problems. Deliverables: running algorithm, technical report.
Homeworks: theoretical assignments. Deliverables: report.